

ReproMan — tools for reproducible neuroimaging

	Acknowledgments

Concepts and technologies

	Background and motivation
	Vision

	Objective

	Related efforts and solutions
	Related technologies

	Environment management use cases

	Glossary

	High-level Package Handling (and ReproZip Architecture Discussion)
	What ReproMan aims (not) to be

	Packages, Package Managers, and Distributions

	Perspective “agents/classes”

Managing resources

	Managing resources

Executing commands on resources

	Execute

Commands and API

	Command line reference
	Main command

	Environment operations

	Command execution

	Miscellaneous commands

	Python module reference
	High-level user interface

	Plumbing

	Configuration management

	Test infrastructure

	Command line interface infrastructure

Indices and tables

	Index

	Module Index

	Search Page

Acknowledgments

ReproMan development is being performed as part of an NIH [http://nih.gov] funded
(1P41EB019936-01A1 [https://projectreporter.nih.gov/project_info_details.cfm?aid=8999833&map=y]) “Center for Reproducible Neuroimaging Computation
(CRNC)”. Its initial development aims to provide a suite of tools for
management of computational environments, which is the TR&D 3 sub-project of
the CRNC, and is lead by Dr. Halchenko [http://haxbylab.dartmouth.edu/ppl/yarik.html].

Background and motivation

Vision

TODO

Objective

TODO

Related efforts and solutions

TODO

Related technologies

	AWS (NITRC-CE)

	Docker/Packer

	Rocket (CoreOS)

	NIH Commons computing [https://datascience.nih.gov/commons]

	boutiques [https://github.com/boutiques/schema]

	local clusters (CH to meet with UMMS IT)

	Neuroscience Gateway [http://www.nsgportal.org/]

Environment management use cases

Glossary

ReproMan uses terminology which is collated from various technologies. This
glossary provides definitions for terms used in the ReproMan documentation
and API, and provides additional references where to seek more information

	cloud instance

	TODO

	container

	TODO Docker [http://docker.io] and Singularity [http://singularity.lbl.gov]

	environment

	TODO

	package

	TODO

	virtual machine

	TODO

High-level Package Handling (and ReproZip Architecture Discussion)

What ReproMan aims (not) to be

We want to leverage existing solutions (such as existing containers, cloud
providers etc), which we will call ‘backends’, and provide a very high level,
unified API, to interface them with purpose of running computations or
interactive sessions.

We want to concentrate on (re)creation of such computation environments from a
specification which is agnostic of a backend and concentrates on describing
what constitutes the content of that environment relevant for the execution of
computation. Backend-specific details of construction, execution and
interfacing with the backend should be “templated” (or otherwise parametrized
in sufficient detail) so an advanced user could still provide their tune ups).
We will not aim at the specification to be OS agnostic, i.e. the package
configuration will have terms that are specific to an architecture or
distribution.

Construction of such environments would heavily depend on specification of
“packages” which contain sufficient information to reconstruct and execute in
the environment. Such specifications could be constructed manually, by ReproMan
from loose human description, or via automated provenance collection of “shell”
command. They also should provide sufficient expressive power to be able to
tune them quickly for most common cases (e.g. upgrade from release X to
release Y)

Packages, Package Managers, and Distributions

We would like to be able to identify, record, and install various packages of
software and data. A package is a collection of files, potentially platform
specific (in the case of binary packages) or requiring reconstruction (such as
compiling applications from source). In addition, installing a package may have
dependencies (additional packages required by the initial package to correctly
operate).

Packages are installed, removed, and queried through the use of “package
managers.” There are different package managers for different components of an
environment and have slightly different capabilities. For example, “yum” and
“apt-get” are used to install binary and source files on a Linux operating
system. “pip” provides download and compilation capability for the Python
interpreted language, while “conda” is another Python package manager that can
supports “virtual environments” (essentially subdirectories) that provide
separate parallel Python environments. Different packages provide varying amount
of meta-information to identify package a particular file belongs to, or to
gather meta-information identifying that package source so it could be reinstalled
later on (e.g. “pip” from a git repository would not store a URL for that
repository anywhere to be recovered).

A “distribution” is a set of packages (typically organized with their dependencies).
Some distributions (such as Linux distros) are self-sufficient, in a sense
that they could be deployed on a bare hardware or as an independent
virtualized environment which would require nothing else. Many distributions though
allow to mix a number of origins, where any package was or could be obtained from. E.g.
it is multiple apt sources for Debian-based distributions and “channels” in conda.

Some distributions (such as the ones based on PIP, conda), do require some base
environment on top of which they would work. But also might require some
minimal set of tools being provided by the base environment. E.g.
conda -based distribution would probably need nothing but basic shell (core
OS dependent), and PIP-based would require Python to be installed. Therefore,
there will be a dependency between package managers: Operating system
packages (yum & apt-get) will need to be installed first, enabling other
package managers (pip, conda, npm) to then run and build upon the base
packages.

The fundamental challenge of ReproMan’s “trace” ability is to identify and
record the package managers, distributions, and packages from the files used in
an experiment. Then to “create” an environment, ReproMan needs to reinstall the
packages from the specification (ideally matching as many properties, such as
version, architecture, size, and hash as possible).

Package Management and Environment Configuration

Here we discuss package managers and key distributions that ReproMan should
cover (and list other potential package managers to consider)

OS Package Managers

	apt-get (dpkg) - Expected on Debian and Ubuntu Gnu/Linux distributions

	yum (rpm) - Expected on CentOS/RHEL and other Red Hat Gnu/Linux distributions

	snap - Linux packages (with sandboxed execution) - http://snapcraft.io/

	Snaps may prove difficult for tracing because commands to download
and build executibles can be embedded into snap packages

In addition, we should be aware of specific package repositories that will not
stand on their own but depend upon specific OS distributions or configurations:

	NeuroDebian - a key source for NeuroImaging Debian/Ubuntu packages

	other PPAs/APT repositories, e.g. for cran

Finally, OS package managers (and related repositories and distributions) are
typically used to install the language-specific package managers described in
the next section. Therefore, ReproMan “create” will need to install OS packages
first, followed by language-specific packages. We may need to allow the
ReproMan environment specification to allow the user to order the package
installation across multiple package managers to ensure resolution of
dependencies.

Language-Related Package Managers

Python

	pip

	PyPi Package Index: https://pypi.python.org/pypi

	conda

	Anaconda Science Platform https://www.continuum.io/downloads

	Conda-Forge https://conda-forge.github.io/

Others

	npm - node.js

	cpan - Perl

	CRAN - R

	brew, linuxbrew, gems - Ruby

Data Package Managers

	DataLad

Environment Configuration

Pretty much in every “computational environment”, environment variables are of
paramount importance since they instrument invocation and possibly pointers to
where components would be located when executed. “Overlay” (Non-OS) packages
rely on adjusting (at least) PATH env variable so that components they
install, possibly overlaying OS-wide installation components, take precedence.

	virtualenv

	Impacts the configuration of python environment (where execution is
happening, custom python, ENV changes)

	modules

	http://modules.sourceforge.net

	Commonly used on HPC, which is the way to “extend” a POSIX distribution.

	We might want to be aware of it (i.e., being able to detect etc), since it
could provide at least versioning information which is conventionally
specified for every installed “module”. It might come handy during trace
operation.

Provisioners

Provisioners allow you to automatically install software, alter configurations,
and maintain files across multiple machines from a central server (or
configuration specification). ReproMan may need to both recognize its use to
create an environment and may have an opportunity to use any of the following
provisioners to recreate an environment:

	ansible

	chef

	puppet

	salt

	fabric

Alternate Installation Approaches

While these are technically not package managers, we may wish to support other
avenues for configuring software to be installed. These approaches may be
impossible to detect automatically:

	VCS in general (git, git-annex) repositories – we can identify
if particular files belong to which repo, where it is available from,
what was the revision etc. We will not collect/record the entirety of the
configuration (i.e. all the settings from .git/config), but only the information
sufficient to reproduce the environment, not necessarily any other possible
interaction with a given VCS

	Generic URL download

	File and directory copy, move, and rename

	Execution of specific commands - may be highly dependent upon the environment

NOTE: Packages that would generally be considered “Core OS” packages, could be
installed using these alternate approaches

Backends (engine)

	native

	docker

	singularity (could be created from docker container)

	virtualbox

	vagrant

	aws

	chroot/schroot(somewhat Debian specific on my tries)

	more cloud providers? google CE, azure, etc… ?

Engines might need nesting, e.g.

vagrant > docker
aws > docker
ssh > singularity

Image

(inspired by docker and singularity?) What represents a state of computation
environment in a form which could be shared (natively or through some export
mechanism), and/or could be used as a basis for instantiation of multiple
instances or derived environments.

	native – none? or in some cases could be a tarball with all relevant pieces (think cde, reprozip)

	docker, singularity – image

	virtualbox – virtual appliance

	vagrant – box (virtualbox appliance with some bells iirc)

	aws – AMI

	
	chroot/schroot – also natively doesn’t have an ‘image’ stage unless we

	easily enforce it – tarball (or possibly eventually fs/btrfs snapshots etc,
would be neat) whatever chroot is bootstrapped!

Instance

	native – none, i.e. there is a singleton instance of the current env

	docker, singularity - container

	virtualbox – VM instance

	vagrant – ???

	aws – instance

	schroot – session (chroot itself doesn’t track anything AFAIK)

Perspective “agents/classes”

Distribution

	bootstrap(spec, backend, instance=None) -> instance/image

	initialize (stage 1)

	which might include batch installation of a number (or all)
of necessary packages; usually offloaded to some utility/backend.
(e.g. debootstrap into a dir, docker build from basic Dockerfile, initiate
aws ami from some image, etc).
Should return an “instance” we could work with in “customization” stage

	customize (stage 2)

	more interactive (or provisioned) which would tune
installation by interacting with the environment; so we should provide adapters on how such interaction
would happen (e.g., we could establish common mechanism via ssh, so every env in stage1
would then get openssh deployed; but that would not work e.g. for schroot as easily)

	at the end it should generate backend-appropriate “instance” which could be reused
for derived containers?

	overlay distributions would need an existing ‘instance’ to operate on

static methods (?)
- get_package_url(package, version) -> urls

	find a URL providing the package of a given version. So, when necessary
we could download/install those packages

	get_distribution_spec_from_package_list({package: version_spec}) -> spec

	given a set of desired packages (with version specs), figure out
distribution specification which would satisfy the specification.
E.g. to determine which snapshot (which codename, date, components) in
snapshots.d.o would carry specified packages

if instance would come out something completely agnostic of the distribution
since instance could actually “contain” multiple distributions.
Possibly tricky part is e.g. all APT “Distributions” would share invocation
– apt, although could (via temporarily augmenting pin priorities) tune it
to consider only its part of the distribution for installation… not sure
if needed
- install(instance, package(s))
- uinstall(instance, package(s))
- upgrade(instance)

Probably not here but in instance…? and not now

	
	activate() - for those which require changing of ENV. If we are to allow

	specification of multiple commands where some aren’t using the specific
“distribution” we might want to spec which envs to be used and turn them
on/off for specific commands

	deactivate()

Image

to be created by bootstrap or “exported” from instance (e.g. “docker commit”
to create an image)

	shrink(spec=None) -> image

	given a specification (or just some generic cleaning operations) we might
want to produce a derived image which would be

??? not clear how image/instance would play out when deploying to e.g. HPC.
E.g. having a docker/singularity image, and then running some task which would
require instantiating that image for every job… condor has some builtin
support already IIRC for deploying virtual machine images to run the tasks etc…
familiarize more

Instance (bootstrapped, backend specific)

(many commands inspired by docker?)

	run(command) -> instantiate (possibly new container) environment and run a command

	exec(command) -> run a command in running env

	start(id)

	stop(id)

or it would be the resource (AWS, docker, remote HPC) which would be capable of
deploying Instances

Backend

???

	should provide mapping from core Distributions specs to native base images
(e.g. how to get base docker image for specific release of debian/ubuntu, …;
which AMIs to use as base, etc)

	we should provide default Core Distributions for case if we have a spec
only with “overlay” distros (e.g. conda-based)

	bootstrap??

Resource

	instantiate (image, …) -> instance(s)

	obtain instance and make it available for execution on the resource

	some are deployed since were bootstrapped on the resource, but we want to be able to
deploy new docker image,

	deployment might result in multiple instances being deployed (master + slaves
for AWS orchestrated execution or is that at run stage… learn more)

(Possibly naive) questions/TODOs

	AMI – could be generated by taking a “snapshot” of existing/running or shutdown instance?

if not – we might want to provide a mode where initial “investigation” is
done locally on a running e.g. docker instance, then script generated for
customization stage and only then full bootstrap (using one of the available
tools for AMI provisioning) is used

	docker – could we export/import an image to get to the same state (possibly loosing overlays etc)

	singularity – the same

Next ones are more in realm of “exec” or “run” aspect which this discussion is
not concentrating on ATM:

	anyone played with StarCluster/ElastiCluster?

	we should familiarize ourselves with built-in features of common PBS systems
(condor, torque) to schedule jobs which run within containers…

Possibly useful modules/tools

	distro-info

	python module for Debian/Ubuntu information about releases. uses data from
distro-info-data

Managing resources

ReproMan works with a set of known resources, such as SSH-accessible
remote machines and local Docker containers. New resources can be added
with reproman create. The following, for
example, creates a new ssh resource named “foo”:

$ reproman create foo --resource-type ssh --backend-parameters host=foo

This takes advantage of the details about this host being defined in an
ssh_config configuration file. If a host were not, you could specify
details like the user and port as additional key-value pairs to
--backend-parameters. To see the full list of the available resource
types and the associated backend parameters, call reproman
backend-parameters.

Creating a resource adds it to ReproMan’s inventory of resources. You
can inspect resources in ReproMan’s inventory with reproman ls:

$ reproman ls --refresh
RESOURCE NAME TYPE ID STATUS
------------- ---- -- ------
buster docker-container b29085a427de1efedb6 running
foo ssh 7a06ae6b-8097-4c59- ONLINE

The output above includes an entry for the SSH resource create above,
“foo”, along with a resource for a Docker container.

While most of the ReproMan subcommands have an argument that specifies
which resource to operate on (e.g., the resource to execute a command on), there are only few more dedicated subcommands
for managing resources: stop, start, and delete. Together
stop and start provide a way to suspend and restart a resource
such as a Docker container or an AWS EC2 instance. For resource types
where suspending the resource doesn’t make sense (e.g., for an ssh
resource), calling start or stop will simply tell you the action
isn’t supported.

delete is the opposite of create. Calling reproman delete
foo would delete the remove the resource created above from ReproMan’s
inventory.

Execute

Once a resource is present in your inventory (see Managing
resources), ReproMan provides a few ways to execute command(s)
on the resource. The first is to request an interactive shell for a
resource with reproman login. Another is to
use reproman execute, which is suitable
for running one-off commands on the resource (though, as its manpage
indicates, it’s capable of a bit more). To some degree, you can think of
login and execute as analogous to ssh HOST and ssh HOST
COMMAND, respectively, where the ReproMan variants provide a common
interface across resource types.

The final way to execute a command is reproman run.

Run

reproman run is concerned with three high-level tasks:

	Starting from a call on the local machine, prepare the remote
resource for command execution (e.g., copying input files to the
remote).

	Execute the command on the remote resource, typically through a
batch system.

	Fetch the results to the local machine. The results include command
output as well as information about the execution (e.g., batch
system submit files).

Reference example

Let’s first establish a simple example that we can reference as we cover
some of the details. In a terminal, we’re visiting a DataLad [https://www.datalad.org/] dataset
where the working tree looks like this:

.
|-- clean.py
`-- data
 |-- f0.csv -> ../.git/annex/objects/[...]
 `-- f1.csv -> ../.git/annex/objects/[...]

The clean.py script takes two positional arguments (e.g., ./clean.py
data/f0.csv cleaned/f0.csv), where the first is a data file to process
and the second is a path to write the output (creating directories if
necessary).

Note

Although DataLad is not a strict requirement, having it installed on
at least the local machine is strongly recommended, and without it
only a limited set of functionality is available. If you are new to
DataLad, consider reading the DataLad handbook [http://handbook.datalad.org].

Choosing an orchestrator

Before running a command, we need to decide on an orchestrator. The
orchestrator is responsible for the first and third tasks above, preparing the remote and fetching the results. The complete
set of orchestrators, accompanied by descriptions, can be seen by
calling reproman run --list=orchestrators.

The main orchestrator choices are datalad-pair,
datalad-pair-run, and datalad-local-run. If the remote has
DataLad available, you should go with one of the datalad-pair* orchestrators.
These will sync your local dataset with a dataset on the remote machine
(using datalad publish [https://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]), creating one if it doesn’t already exist
(using datalad create-sibling [https://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]).

datalad-pair differs from the datalad-*-run orchestrators in the
way it captures results. After execution has completed, datalad-pair
commits the result on the remote via DataLad. On fetch, it will pull
that commit down with datalad update [https://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]. Outputs (specified via
--outputs or as a job parameter) are retrieved with datalad get [https://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html].

datalad-pair-run and datalad-local-run, on the other hand,
determine a list of output files based on modification times and
packages these files in a tarball. (This approach is inspired by
datalad-htcondor [https://github.com/datalad/datalad-htcondor].) On fetch, this tarball is downloaded locally and
used to create a datalad run [http://docs.datalad.org/en/latest/generated/man/datalad-run.html] commit in the local repository.

There is one more orchestrator, datalad-no-remote, that is designed
to work only with a local shell resource. It is similar to
datalad-pair, except that the command is executed in the same
directory from which reproman run is invoked.

Revisiting our concrete example and assuming we have
an SSH resource named “foo” in our inventory, here’s how we could
specify that the datalad-pair-run orchestrator should be used:

$ reproman run --resource foo \
 --orc datalad-pair-run --input data/f0.csv \
 ./clean.py data/f0.csv cleaned/f0.csv

Notice that in addition to the orchestrator, we specify the input file
that needs to be available on the remote. This is only necessary for
files that are tracked by git-annex. Files tracked by Git do not need to
be declared as inputs because the same revision of the dataset is
checked out on the remote.

Warning

The orchestration with DataLad datasets is work in progress, with
some rough edges. You might end up in a state that ReproMan doesn’t
know how to sync. Please report any issues you encounter on the
issue tracker [https://github.com/ReproNim/reproman/issues/] .

Choosing a submitter

Another, easier decision is which submitter to use. This comes down to
which, if any, batch system your remote resource supports. The currently
available options are pbs, condor, or local. With local,
the job is executed directly through sh rather than submitted to a
batch system.

Our last example invocation could be extended to use Condor like so:

$ reproman run --resource foo \
 --sub condor \
 --orc datalad-pair-run --input data/f0.csv \
 ./clean.py data/f0.csv cleaned/f0.csv

Note that which batch systems are currently supported is mostly a matter
of which systems ReproMan developers currently have at their disposal.
If you would like to add support for your system (or have experience
with more general approach like DRMAA [https://en.wikipedia.org/wiki/DRMAA]), we’d welcome help in this area.

Detached jobs

By default, when a run command is executed, it submits the job,
registers it locally, and exits. The registered jobs can be viewed and
managed with reproman jobs. To list all jobs,
run reproman jobs without any arguments. To fetch a completed job
back into the local dataset, call reproman jobs NAME, where NAME
is a substring of the job ID that uniquely identifies the job.

In cases where you prefer run to stay attached and fetch the job
when it is finished, pass the --follow argument to reproman run.

Concurrent subjobs

If you’re submitting a job to a batch system, it’s likely that you want
to submit concurrent subjobs. To continue with the toy example from above, you’d want to have two jobs, each one running
clean.py on a different input file.

reproman run has two options for specifying subjobs:
--batch-parameter and --batch-spec. The first can work for
simple cases, like our example:

$ reproman run --resource foo --sub condor --orc datalad-pair-run \
 --batch-parameter name=f0,f1 \
 --input 'data/{p[name]}.csv' \
 ./clean.py data/{p[name]}.csv cleaned/{p[name]}.csv

A subjob will be created for each name value, with any {p[name]}
field in the input, output, and command strings formatted with the
value. In this case, the two commands executed on the remote would be

./clean.py data/f0.csv cleaned/f0.csv
./clean.py data/f1.csv cleaned/f1.csv

The --batch-spec option is the more cumbersome but more flexible
counterpart to --batch-parameter. Its value should point to a YAML
file that defines a series of records, each one with all of the
parameters for a single subjob command. The equivalent of
--batch-parameter name=f0,f1 would be a YAML file with the following
content:

- name: f0
- name: f1

Warning

When there is more than one subjob, *-run orchestrators do not
create a valid run commit. Specifically, datalad rerun [http://docs.datalad.org/en/latest/generated/man/datalad-rerun.html] could not
be used to rerun the commit on the local machine because the values
for the inputs, outputs, and command do not correspond to concrete
values. This is an unresolved issue, but at this point the commit
should be considered as a way to capture the information about the
remote command execution—one that certainly provides more
information than logging into the remote and running
condor_submit yourself.

Job parameters

To define a job, ReproMan builds up a “job spec” from job parameters.
Call reproman run --list=parameters to see a list of available
parameters. The parameters can be specified within a file passed to the
--job-spec option, as a key-value pair specified via the
--job-parameter option, or through a dedicate command-line option.

The last option is only available for a subset of parameters, with the
intention of giving these parameters more exposure and making them
slightly more convenient to use. In the examples so far, we’ve only seen
job parameters in the form of a dedicated command-line argument, things
like --orc datalad-pair-run. Alternatively this could be expressed
more verbosely through --job-parameter as --job-parameter
orchestrator=datalad-pair-run. Or it could be contained as a top-level
key-value pair in a YAML file passed to --job-spec.

When a value is specified in multiple sources, the order of precedence
is the dedicated option, then the value specified via
--job_parameters, and finally the value contained in a
--job-spec YAML file. When multiple --job-spec arguments are
given and define a conflicting key, the value from the last specified
file wins.

Captured job information

When using any DataLad-based orchestrator, the run will ultimately be
captured as a commit in the dataset. In addition to working tree changes
that the command caused (e.g., files it generated), the commit will
include new files under a .reproman/jobs/<resource name>/<job ID>/
directory. Of the files from that directory, the ones described below
are likely to be of the most interest to callers.

	submit

	The batch system submit file (e.g., when the submitter is condor, the file passed to condor_submit).

	runscript

	The wrapper script called by the submit file. It runs the subjob
command indicated by its sole command-line argument, an integer that
represents the subjob.

	std{out,err}.N

	The standard output and standard error for each subjob command. If
subjob N, stderr.N is where you should look first for more
information.

	spec.yaml

	The “job spec” mentioned in the last section. Any key that does
not start with an underscore is a job parameter that can be
specified by the caller.

In addition to recording information about the submitted job, this
spec can provide a starting point for future reproman run calls.
You can copy it to a new file, tweak it as desired, and feed it in
via --job-spec. Or, instead of copying the file, you can give
the original file to --job-spec and then override the
values as needed with command-line arguments or
later --job-spec values.

Command line reference

Main command

	reproman

Environment operations

	reproman-ls

	reproman-create

	reproman-install

	reproman-delete

	reproman-start

	reproman-stop

	reproman-login

Command execution

	reproman-execute

	reproman-run

	reproman-jobs

Miscellaneous commands

	reproman-backend-parameters

	reproman-diff

	reproman-retrace

	reproman-test

reproman

Synopsis

reproman [-h] [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [--version] [--dbg] [--idbg] [-C PATH] [-c CONFIG]
 {create,install,delete,start,stop,login,execute,run,ls,jobs,backend-parameters,retrace,diff,test}
 ...

Description

ReproMan aims to ease construction and execution of computation environments
based on collected provenance data.

Commands for manipulating computation environments

	create: Create a computation environment

	install: Install packages according to the provided specification(s)

	delete: Delete a computation environment

	start: Start a computation environment

	stop: Stop a computation environment

	login: Log into a computation environment

	execute: Execute a command in a computation environment

	run: Run a command on the specified resource

Miscellaneous commands

	ls: List known computation resources, images and environments

	jobs: View and manage reproman run jobs

	backend-parameters: Display available backend parameters

	retrace: Gather detailed package information from paths or a ReproZip trace file

	diff: Report if a specification satisfies the requirements in another

	test: Run internal ReproMan (unit)tests

General information

Detailed usage information for individual commands is available via
command-specific –help, i.e.: reproman <command> –help

Options

{create,install,delete,start,stop,login,execute,run,ls,jobs,backend-parameters,retrace,diff,test}

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–version

show the program’s version and license information and exit

–dbg

enter Python debugger when uncaught exception happens

–idbg

enter IPython debugger when uncaught exception happens

-C PATH

run as if reproman were started in <path> instead of the current working directory. When multiple -C options are given, each subsequent non-absolute -C <path> is interpreted relative to the preceding -C <path>. This option affects the interpretations of the path names in that they are made relative to the working directory caused by the -C option

-c CONFIG, –config CONFIG

path to ReproMan configuration file. This option can be given multiple times, in which case values in the later files override previous ones.

“Reproducibly Manage Your Environments”

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-ls

Synopsis

reproman-ls [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [--resref-type TYPE] [-v] [-r]
 [RESOURCE [RESOURCE ...]]

Description

List known computation resources, images and environments

Examples

$ reproman ls

Options

RESOURCE

Restrict the output to this resource name or ID. [Default: None]

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify ‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

-v, –verbose

provide more verbose listing. [Default: False]

-r, –refresh

Refresh the status of the resources listed. [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-create

Synopsis

reproman-create [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [-t RESOURCE_TYPE] [-b PARAM]
 NAME

Description

Create a computation environment

Options

NAME

Name of the resource to create. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

-t RESOURCE_TYPE, –resource-type RESOURCE_TYPE

Resource type to create. Constraints: value must be a string

-b PARAM, –backend-parameters PARAM

One or more backend parameters in the form KEY=VALUE. Use the command reproman backend-parameters to see the list of available backend parameters.

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-install

Synopsis

reproman-install [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [--resref-type TYPE]
 RESOURCE SPEC [SPEC ...]

Description

Install packages according to the provided specification(s)

Examples

$ reproman install docker recipe_for_failure.yml

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a string

SPEC

file with specifications (in supported formats) of packages used in executed environment. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify ‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-delete

Synopsis

reproman-delete [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [--resref-type TYPE] [-y] [-f]
 RESOURCE

Description

Delete a computation environment

Examples

$ reproman delete my-resource

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify ‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

-y, –skip-confirmation

Delete resource without prompting user for confirmation. [Default: False]

-f, –force

Remove a resource from the local inventory regardless of connection errors. Use with caution!. [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-start

Synopsis

reproman-start [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [--resref-type TYPE]
 RESOURCE

Description

Start a computation environment

Examples

$ reproman start my-resource

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify ‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-stop

Synopsis

reproman-stop [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [--resref-type TYPE]
 RESOURCE

Description

Stop a computation environment

Examples

$ reproman stop my-resource

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify ‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-login

Synopsis

reproman-login [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [--resref-type TYPE]
 RESOURCE

Description

Log into a computation environment

Examples

$ reproman login my-resource

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify ‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-execute

Synopsis

reproman-execute [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [-r RESOURCE] [--resref-type TYPE] [--internal] [--trace]
 COMMAND [ARGS [ARGS ...]]

Description

Execute a command in a computation environment

Examples

$ reproman execute mkdir /home/blah/data

Options

COMMAND

name of the command to run. Constraints: value must be a string

ARGS

list of positional and keyword args to pass to the command. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

-r RESOURCE, –resource RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a string [Default: None]

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify ‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

–internal

Instead of running a generic/any command, execute the internal ReproMan command available within sessions. Known are: mkdir, isdir, put, get, chown, chmod. [Default: False]

–trace

if set, trace execution within the environment. [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-run

Synopsis

reproman-run [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [-m MESSAGE] [-r RESOURCE] [--resref-type TYPE]
 [--list {submitters,orchestrators,parameters,}]
 [--submitter NAME] [--orchestrator NAME] [--batch-spec PATH]
 [--batch-parameter PATH] [--job-spec PATH]
 [--job-parameter PARAM] [-i PATH] [-o PATH] [--follow [ACTION]]
 ...

Description

Run a command on the specified resource.

Two main options control how the job is executed: the orchestator and the
submitter. The orchestrator that is selected controls details like how the
data is made available on the resource and how the results are fetched. The
submitter controls how the job is submitted on the resource (e.g., as a
condor job). Use –list to see information on the available orchestrators
and submitters.

Unless –follow is specified, the job is started and detached. Use
reproman jobs to list and fetch detached jobs.

Options

COMMAND

command for execution. [Default: None]

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

-m MESSAGE, –message MESSAGE

Message to use when saving the run. The details depend on the orchestator, but in general this message will be used in the commit message. [Default: None]

-r RESOURCE, –resource RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a string [Default: None]

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify ‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

–list {submitters,orchestrators,parameters,}

Show available submitters, orchestrators, or job parameters. If an empty string is given, show all. [Default: None]

–submitter NAME, –sub NAME

Name of submitter. The submitter controls how the command should be submitted on the resource (e.g., with CONDOR_SUBMIT). Use –list to see available submitters. Constraints: value must be one of (None, ‘pbs’, ‘condor’, ‘slurm’, ‘local’, ‘lsf’) [Default: None]

–orchestrator NAME, –orc NAME

Name of orchestrator. The orchestrator performs pre- and post-command steps like setting up the directory for command execution and storing the results. Use –list to see available orchestrators. Constraints: value must be one of (None, ‘plain’, ‘datalad-pair’, ‘datalad-no-remote’, ‘datalad-pair-run’, ‘datalad- local-run’) [Default: None]

–batch-spec PATH, –bs PATH

YAML file that defines a series of records with parameters for commands. A command will be constructed for each record, with record values available in the command as well as the inputs and outputs as {P[KEY]}. See –batch-parameter for an alternative method for simple combinations. [Default: None]

–batch-parameter PATH, –bp PATH

Define batch parameters with ‘KEY=val1,val2,…’. Different keys can be specified by giving multiple values, in which case the product of the values are taken. For example, ‘subj=mei,satsuki’ and ‘day=1,2’ would expand to four records, pairing each subj with each day. Values can be a glob pattern to match against the current working directory. See –batch-spec for specifying more complex records. This option can be given more than once. [Default: None]

–job-spec PATH, –js PATH

YAML files that define job parameters. Multiple paths can be given. If a parameter is defined in multiple specs, the value from the last path that defines it is used. Use –list to see available parameters for the built-in templates. This option can be given more than once. [Default: None]

–job-parameter PARAM, –jp PARAM

A job parameter in the form KEY=VALUE. If the same parameter is defined via a job spec, the value given here takes precedence. The values are available as fields in the templates used to generate both the run script and submission script. Use –list to see available parameters for the built-in templates. This option can be given more than once. [Default: None]

-i PATH, –input PATH

An input path to the command. How input paths are used depends on the orchestrator, but, at the very least, the orchestrator should try to make these paths available on the resource. This option can be given more than once. [Default: None]

-o PATH, –output PATH

An output path to the command. How output paths are handled depends on the orchestrator. This option can be given more than once. [Default: None]

–follow [ACTION]

Continue to follow the submitted command instead of submitting it and detaching. Constraints: value must be one of (False, True, ‘stop’, ‘stop-if-success’, ‘delete’, ‘delete-if-success’) [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-jobs

Synopsis

reproman-jobs [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [-a ACTION] [--all] [-s]
 [JOB [JOB ...]]

Description

View and manage reproman run jobs.

The possible actions are

	list: Display a oneline list of all registered jobs

	show: Display more information for each job over multiple lines

	delete: Unregister a job locally

	fetch: Fetch a completed job

	auto: If jobs are specified (via JOB or –all), behave like ‘fetch’.
Otherwise, behave like ‘list’.

Options

JOB

A full job ID or a unique substring.

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

-a ACTION, –action ACTION

Operation to perform on the job(s). Constraints: value must be one of (‘auto’, ‘list’, ‘show’, ‘delete’, ‘fetch’) [Default: ‘auto’]

–all

Operate on all jobs. [Default: False]

-s, –status

Query the resource for status information when listing or showing jobs. [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-backend-parameters

Synopsis

reproman-backend-parameters [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [BACKEND [BACKEND ...]]

Description

Display available backend parameters.

Options

BACKEND

Restrict output to this backend. Constraints: value must be a string [Default: None]

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-diff

Synopsis

reproman-diff [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [--satisfies]
 prov1 prov2

Description

Report if a specification satisfies the requirements in another
specification

Examples

$ reproman diff environment1.yml environment2.yml

Options

prov1

ReproMan provenance file. Constraints: value must be a string

prov2

ReproMan provenance file. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–satisfies, -s

Make sure the first environment satisfies the needs of the second environment.

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-retrace

Synopsis

reproman-retrace [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
 [--spec SPEC] [-o output_file] [-r RESOURCE]
 [--resref-type TYPE]
 [PATH [PATH ...]]

Description

Gather detailed package information from paths or a ReproZip trace file.

Examples

$ reproman retrace –spec reprozip_run.yml > reproman_config.yml

Options

PATH

path(s) to be traced. If spec is provided, would trace them after tracing the spec. Constraints: value must be a string [Default: None]

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–spec SPEC

ReproZip YML file to be analyzed. Constraints: value must be a string [Default: None]

-o output_file, –output-file output_file

Output file. If not specified - printed to stdout. Constraints: value must be a string [Default: None]

-r RESOURCE, –resource RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a string [Default: None]

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify ‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-test

Synopsis

reproman-test [--version] [-h]
 [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]

Description

Run internal ReproMan (unit)tests.

This can be used to verify correct operation on the system

Options

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

Python module reference

This module reference extends the manual with a comprehensive overview of the
available functionality built into reproman. Each module in the package is
documented by a general summary of its purpose and the list of classes and
functions it provides.

High-level user interface

	api

	Python ReproMan API exposing user-oriented commands (also available via CLI)

Plumbing

	cmd

	Wrapper for command and function calls, allowing for dry runs and output handling

	consts

	reproman constants

	log

	

	utils

	

	version

	Defines version to be imported in the module and obtained from setup.py

	support.configparserinc

	

Configuration management

	config

	Registry-like monster for now simply borrowed from bigmess/pymvpa

Test infrastructure

	tests.utils

	Miscellaneous utilities to assist with testing

Command line interface infrastructure

	cmdline.main

	

	cmdline.helpers

	

	cmdline.common_args

	

api

Python ReproMan API exposing user-oriented commands (also available via CLI)

backend_parameters

	
reproman.api.backend_parameters(backends=None)

	Display available backend parameters.

create

	
reproman.api.create(name, resource_type, backend_parameters)

	Create a computation environment

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the resource to create. Constraints: value must be a string.

	resource_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Resource type to create. Constraints: value must be a string.

	backend_parameters – One or more backend parameters in the form KEY=VALUE. Use the
command reproman backend-parameters to see the list of available
backend parameters.

delete

	
reproman.api.delete(resref, resref_type='auto', skip_confirmation=False, force=False)

	Delete a computation environment

Examples

$ reproman delete my-resource

	Parameters

	
	resref (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string,
or value must be None.

	resref_type ({auto, name, id}, optional) – A resource can be referenced by its name or ID. In the unlikely
case that a name collides with an ID, explicitly specify ‘name’ or
‘id’ to disambiguate. Constraints: value must be one of (‘auto’,
‘name’, ‘id’). [Default: ‘auto’]

	skip_confirmation (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Delete resource without prompting user for confirmation. [Default:
False]

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Remove a resource from the local inventory regardless of connection
errors. Use with caution!. [Default: False]

diff

	
reproman.api.diff(prov1, prov2, satisfies)

	Report if a specification satisfies the requirements in another
specification

Examples

$ reproman diff environment1.yml environment2.yml

	Parameters

	
	prov1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – ReproMan provenance file. Constraints: value must be a string.

	prov2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – ReproMan provenance file. Constraints: value must be a string.

	satisfies (bool [https://docs.python.org/3/library/functions.html#bool]) – Make sure the first environment satisfies the needs of the second
environment.

execute

	
reproman.api.execute(command, args, resref=None, resref_type='auto', internal=False, trace=False)

	Execute a command in a computation environment

Examples

$ reproman execute mkdir /home/blah/data

	Parameters

	
	command (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the command to run. Constraints: value must be a string.

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) – list of positional and keyword args to pass to the command.
Constraints: list expected, each value must be a string.

	resref (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None], optional) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string,
or value must be None. [Default: None]

	resref_type ({auto, name, id}, optional) – A resource can be referenced by its name or ID. In the unlikely
case that a name collides with an ID, explicitly specify ‘name’ or
‘id’ to disambiguate. Constraints: value must be one of (‘auto’,
‘name’, ‘id’). [Default: ‘auto’]

	internal (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Instead of running a generic/any command, execute the internal
ReproMan command available within sessions. Known are: mkdir,
isdir, put, get, chown, chmod. [Default: False]

	trace (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if set, trace execution within the environment. [Default: False]

install

	
reproman.api.install(resref, spec, resref_type='auto')

	Install packages according to the provided specification(s)

Examples

$ reproman install docker recipe_for_failure.yml

	Parameters

	
	resref (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string,
or value must be None.

	spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – file with specifications (in supported formats) of packages used in
executed environment. Constraints: list expected, each value must be
a string.

	resref_type ({auto, name, id}, optional) – A resource can be referenced by its name or ID. In the unlikely
case that a name collides with an ID, explicitly specify ‘name’ or
‘id’ to disambiguate. Constraints: value must be one of (‘auto’,
‘name’, ‘id’). [Default: ‘auto’]

jobs

	
reproman.api.jobs(queries, action='auto', all_=False, status=False)

	View and manage reproman run jobs.

The possible actions are

	list: Display a oneline list of all registered jobs

	show: Display more information for each job over multiple lines

	delete: Unregister a job locally

	fetch: Fetch a completed job

	auto: If jobs are specified (via JOB or –all), behave like ‘fetch’.
Otherwise, behave like ‘list’.

	Parameters

	
	queries – A full job ID or a unique substring.

	action ({auto, list [https://docs.python.org/3/library/stdtypes.html#list], show, delete, fetch}, optional) – Operation to perform on the job(s). Constraints: value must be one
of (‘auto’, ‘list’, ‘show’, ‘delete’, ‘fetch’). [Default: ‘auto’]

	all (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Operate on all jobs. [Default: False]

	status (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Query the resource for status information when listing or showing
jobs. [Default: False]

login

	
reproman.api.login(resref, resref_type='auto')

	Log into a computation environment

Examples

$ reproman login my-resource

	Parameters

	
	resref (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string,
or value must be None.

	resref_type ({auto, name, id}, optional) – A resource can be referenced by its name or ID. In the unlikely
case that a name collides with an ID, explicitly specify ‘name’ or
‘id’ to disambiguate. Constraints: value must be one of (‘auto’,
‘name’, ‘id’). [Default: ‘auto’]

ls

	
reproman.api.ls(resrefs=None, resref_type='auto', verbose=False, refresh=False)

	List known computation resources, images and environments

Examples

$ reproman ls

	Parameters

	
	resrefs – Restrict the output to this resource name or ID. [Default: None]

	resref_type ({auto, name, id}, optional) – A resource can be referenced by its name or ID. In the unlikely
case that a name collides with an ID, explicitly specify ‘name’ or
‘id’ to disambiguate. Constraints: value must be one of (‘auto’,
‘name’, ‘id’). [Default: ‘auto’]

	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – provide more verbose listing. [Default: False]

	refresh (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Refresh the status of the resources listed. [Default: False]

retrace

	
reproman.api.retrace(path=None, spec=None, output_file=None, resref=None, resref_type='auto')

	Gather detailed package information from paths or a ReproZip trace file.

Examples

$ reproman retrace –spec reprozip_run.yml > reproman_config.yml

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None], optional) – path(s) to be traced. If spec is provided, would trace them after
tracing the spec. Constraints: list expected, each value must be a
string, or value must be None. [Default: None]

	spec (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None], optional) – ReproZip YML file to be analyzed. Constraints: value must be a
string, or value must be None. [Default: None]

	output_file (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None], optional) – Output file. If not specified - printed to stdout. Constraints:
value must be a string, or value must be None. [Default: None]

	resref (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None], optional) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’.Note: As a special case, a session
instance can be passed as the value for resref. . Constraints:
value must be a string, or value must be None. [Default: None]

	resref_type ({auto, name, id}, optional) – A resource can be referenced by its name or ID. In the unlikely
case that a name collides with an ID, explicitly specify ‘name’ or
‘id’ to disambiguate. Constraints: value must be one of (‘auto’,
‘name’, ‘id’). [Default: ‘auto’]

run

	
reproman.api.run(command=None, message=None, resref=None, resref_type='auto', list_=None, submitter=None, orchestrator=None, batch_spec=None, batch_parameters=None, job_specs=None, job_parameters=None, inputs=None, outputs=None, follow=False)

	Run a command on the specified resource.

Two main options control how the job is executed: the orchestator and the
submitter. The orchestrator that is selected controls details like how the
data is made available on the resource and how the results are fetched. The
submitter controls how the job is submitted on the resource (e.g., as a
condor job). Use –list to see information on the available orchestrators
and submitters.

Unless –follow is specified, the job is started and detached. Use
reproman jobs to list and fetch detached jobs.

	Parameters

	
	command – command for execution. [Default: None]

	message – Message to use when saving the run. The details depend on the
orchestator, but in general this message will be used in the commit
message. [Default: None]

	resref (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None], optional) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string,
or value must be None. [Default: None]

	resref_type ({auto, name, id}, optional) – A resource can be referenced by its name or ID. In the unlikely
case that a name collides with an ID, explicitly specify ‘name’ or
‘id’ to disambiguate. Constraints: value must be one of (‘auto’,
‘name’, ‘id’). [Default: ‘auto’]

	list – Show available submitters, orchestrators, or job parameters. If an
empty string is given, show all. [Default: None]

	submitter ({None, pbs, condor, slurm, local, lsf}, optional) – Name of submitter. The submitter controls how the command should be
submitted on the resource (e.g., with condor_submit). Constraints:
value must be one of (None, ‘pbs’, ‘condor’, ‘slurm’, ‘local’,
‘lsf’). [Default: None]

	orchestrator ({None, plain, datalad-pair, datalad-no-remote, datalad-pair-run, datalad-local-run}, optional) – Name of orchestrator. The orchestrator performs pre- and post-
command steps like setting up the directory for command execution
and storing the results. Constraints: value must be one of (None,
‘plain’, ‘datalad-pair’, ‘datalad-no-remote’, ‘datalad-pair-run’,
‘datalad-local-run’). [Default: None]

	batch_spec – YAML file that defines a series of records with parameters for
commands. A command will be constructed for each record, with record
values available in the command as well as the inputs and outputs as
{p[KEY]}. See batch_parameters for an alternative method for
simple combinations. [Default: None]

	batch_parameters – Define batch parameters with ‘KEY=val1,val2,…’. Different keys can
be specified by giving multiple values, in which case the product of
the values are taken. For example, ‘subj=mei,satsuki’ and ‘day=1,2’
would expand to four records, pairing each subj with each day.
Values can be a glob pattern to match against the current working
directory. See batch_spec for specifying more complex records. .
[Default: None]

	job_specs – YAML files that define job parameters. Multiple paths can be given.
If a parameter is defined in multiple specs, the value from the last
path that defines it is used. . [Default: None]

	job_parameters – A job parameter in the form KEY=VALUE. If the same parameter is
defined via a job spec, the value given here takes precedence. The
values are available as fields in the templates used to generate
both the run script and submission script. . [Default: None]

	inputs – An input path to the command. How input paths are used depends on
the orchestrator, but, at the very least, the orchestrator should
try to make these paths available on the resource. . [Default: None]

	outputs – An output path to the command. How output paths are handled depends
on the orchestrator. . [Default: None]

	follow ({False, True, stop, stop-if-success, delete, delete-if-success}, optional) – Continue to follow the submitted command instead of submitting it
and detaching. Constraints: value must be one of (False, True,
‘stop’, ‘stop-if-success’, ‘delete’, ‘delete-if-success’). [Default:
False]

start

	
reproman.api.start(resref, resref_type='auto')

	Start a computation environment

Examples

$ reproman start my-resource

	Parameters

	
	resref (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string,
or value must be None.

	resref_type ({auto, name, id}, optional) – A resource can be referenced by its name or ID. In the unlikely
case that a name collides with an ID, explicitly specify ‘name’ or
‘id’ to disambiguate. Constraints: value must be one of (‘auto’,
‘name’, ‘id’). [Default: ‘auto’]

stop

	
reproman.api.stop(resref, resref_type='auto')

	Stop a computation environment

Examples

$ reproman stop my-resource

	Parameters

	
	resref (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string,
or value must be None.

	resref_type ({auto, name, id}, optional) – A resource can be referenced by its name or ID. In the unlikely
case that a name collides with an ID, explicitly specify ‘name’ or
‘id’ to disambiguate. Constraints: value must be one of (‘auto’,
‘name’, ‘id’). [Default: ‘auto’]

test

	
reproman.api.test()

	Run internal ReproMan (unit)tests.

This can be used to verify correct operation on the system

reproman.cmd

Wrapper for command and function calls, allowing for dry runs and output handling

	
class reproman.cmd.GitRunner(cwd=None, env=None, protocol=None)[source]

	Bases: reproman.cmd.Runner

Runner to be used to run git and git annex commands

Overloads the runner class to check & update GIT_DIR and
GIT_WORK_TREE environment variables set to the absolute path
if is defined and is relative path

	
static get_git_environ_adjusted(env=None)[source]

	Replaces GIT_DIR and GIT_WORK_TREE with absolute paths if relative path and defined

	
run(cmd, env=None, *args, **kwargs)[source]

	Runs the command cmd using shell.

In case of dry-mode cmd is just added to commands and it is
actually executed otherwise.
Allows for separately logging stdout and stderr or streaming it to
system’s stdout or stderr respectively.

	Note: Using a string as cmd and shell=True allows for piping,

	multiple commands, etc., but that implies shlex.split() is not
used. This is considered to be a security hazard.
So be careful with input.

	Parameters

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) – String (or list) defining the command call. No shell is used if cmd
is specified as a list

	log_stdout (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, stdout is logged. Goes to sys.stdout otherwise.

	log_stderr (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, stderr is logged. Goes to sys.stderr otherwise.

	log_online (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Either to log as output comes in. Setting to True is preferable
for running user-invoked actions to provide timely output

	expect_stderr (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Normally, having stderr output is a signal of a problem and thus it
gets logged at ERROR level. But some utilities, e.g. wget, use
stderr for their progress output. Whenever such output is expected,
set it to True and output will be logged at DEBUG level unless
exit status is non-0 (in non-online mode only, in online – would
log at DEBUG)

	expect_fail (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Normally, if command exits with non-0 status, it is considered an
ERROR and logged accordingly. But if the call intended for checking
routine, such alarming message should not be logged as ERROR, thus
it will be logged at DEBUG level.

	cwd (string, optional) – Directory under which run the command (passed to Popen)

	env (string, optional) – Custom environment to pass

	shell (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Run command in a shell. If not specified, then it runs in a shell
only if command is specified as a string (not a list)

	Returns

	

	Return type

	(stdout, stderr)

	Raises

	CommandError – if command’s exitcode wasn’t 0 or None. exitcode is passed to
CommandError’s code-field. Command’s stdout and stderr are stored
in CommandError’s stdout and stderr fields respectively.

	
class reproman.cmd.Runner(cwd=None, env=None, protocol=None)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides a wrapper for calling functions and commands.

An object of this class provides a methods that calls shell commands or
python functions, allowing for protocolling the calls and output handling.

Outputs (stdout and stderr) can be either logged or streamed to system’s
stdout/stderr during execution.
This can be enabled or disabled for both of them independently.
Additionally, a protocol object can be a used with the Runner. Such a
protocol has to implement reproman.support.protocol.ProtocolInterface, is
able to record calls and allows for dry runs.

	
call(f, *args, **kwargs)[source]

	Helper to unify collection of logging all “dry” actions.

Calls f if Runner-object is not in dry-mode. Adds f along with
its arguments to commands otherwise.

f : callable

	*args, **kwargs:

	Callable arguments

	
commands

	

	
cwd

	

	
dry

	

	
env

	

	
log(msg, level=10)[source]

	log helper

Logs at DEBUG-level by default and adds “Protocol:”-prefix in order to
log the used protocol.

	
protocol

	

	
run(cmd, log_stdout=True, log_stderr=True, log_online=False, expect_stderr=False, expect_fail=False, cwd=None, env=None, shell=None)[source]

	Runs the command cmd using shell.

In case of dry-mode cmd is just added to commands and it is
actually executed otherwise.
Allows for separately logging stdout and stderr or streaming it to
system’s stdout or stderr respectively.

	Note: Using a string as cmd and shell=True allows for piping,

	multiple commands, etc., but that implies shlex.split() is not
used. This is considered to be a security hazard.
So be careful with input.

	Parameters

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) – String (or list) defining the command call. No shell is used if cmd
is specified as a list

	log_stdout (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, stdout is logged. Goes to sys.stdout otherwise.

	log_stderr (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, stderr is logged. Goes to sys.stderr otherwise.

	log_online (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Either to log as output comes in. Setting to True is preferable
for running user-invoked actions to provide timely output

	expect_stderr (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Normally, having stderr output is a signal of a problem and thus it
gets logged at ERROR level. But some utilities, e.g. wget, use
stderr for their progress output. Whenever such output is expected,
set it to True and output will be logged at DEBUG level unless
exit status is non-0 (in non-online mode only, in online – would
log at DEBUG)

	expect_fail (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Normally, if command exits with non-0 status, it is considered an
ERROR and logged accordingly. But if the call intended for checking
routine, such alarming message should not be logged as ERROR, thus
it will be logged at DEBUG level.

	cwd (string, optional) – Directory under which run the command (passed to Popen)

	env (string, optional) – Custom environment to pass

	shell (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Run command in a shell. If not specified, then it runs in a shell
only if command is specified as a string (not a list)

	Returns

	

	Return type

	(stdout, stderr)

	Raises

	CommandError – if command’s exitcode wasn’t 0 or None. exitcode is passed to
CommandError’s code-field. Command’s stdout and stderr are stored
in CommandError’s stdout and stderr fields respectively.

	
reproman.cmd.get_runner(*args, **kwargs)[source]

	

	
reproman.cmd.link_file_load(src, dst, dry_run=False)[source]

	Just a little helper to hardlink files’s load

reproman.consts

reproman constants

reproman.log

	
class reproman.log.ColorFormatter(use_color=None, log_name=False, log_pid=False)[source]

	Bases: logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]

	
BLACK = 0

	

	
BLUE = 4

	

	
BOLD_SEQ = '\x1b[1m'

	

	
COLORS = {'CRITICAL': 3, 'DEBUG': 4, 'ERROR': 1, 'INFO': 7, 'WARNING': 3}

	

	
COLOR_SEQ = '\x1b[1;%dm'

	

	
CYAN = 6

	

	
GREEN = 2

	

	
MAGENTA = 5

	

	
RED = 1

	

	
RESET_SEQ = '\x1b[0m'

	

	
WHITE = 7

	

	
YELLOW = 3

	

	
format(record)[source]

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
formatter_msg(fmt, use_color=False)[source]

	

reproman.utils

	
class reproman.utils.HashableDict[source]

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Dict that can be used as keys

	
class reproman.utils.PathRoot(predicate)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Find the root of paths based on a predicate function.

The path -> root mapping is cached across calls.

	Parameters

	predicate (callable) – A callable that will be passed a path and should return true
if that path should be considered a root.

	
class reproman.utils.SemanticVersion(major, minor, patch, tag)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
major

	Alias for field number 0

	
minor

	Alias for field number 1

	
patch

	Alias for field number 2

	
tag

	Alias for field number 3

	
reproman.utils.any_re_search(regexes, value)[source]

	Return if any of regexes (list or str) searches succesfully for value

	
reproman.utils.assure_bytes(s, encoding='utf-8')[source]

	Convert/encode unicode to bytes if of ‘str’

	Parameters

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Encoding to use. “utf-8” is the default

	
reproman.utils.assure_dict_from_str(s, **kwargs)[source]

	Given a multiline string with key=value items convert it to a dictionary

	Parameters

	
	s (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	None if input s is empty (Returns) –

	
reproman.utils.assure_dir(*args)[source]

	Make sure directory exists.

Joins the list of arguments to an os-specific path to the desired
directory and creates it, if it not exists yet.

	
reproman.utils.assure_list(s)[source]

	Given not a list, would place it into a list. If None - empty list is returned

	Parameters

	s (list [https://docs.python.org/3/library/stdtypes.html#list] or anything) –

	
reproman.utils.assure_list_from_str(s, sep='\n')[source]

	Given a multiline string convert it to a list of return None if empty

	Parameters

	s (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) –

	
reproman.utils.assure_tuple_or_list(obj)[source]

	Given an object, wrap into a tuple if not list or tuple

	
reproman.utils.assure_unicode(s, encoding=None, confidence=None)[source]

	Convert/decode to str if of ‘bytes’

	Parameters

	
	encoding (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Encoding to use. If None, “utf-8” is tried, and then if not a valid
UTF-8, encoding will be guessed

	confidence (float [https://docs.python.org/3/library/functions.html#float], optional) – A value between 0 and 1, so if guessing of encoding is of lower than
specified confidence, ValueError is raised

	
reproman.utils.attrib(*args, **kwargs)[source]

	Extend the attr.ib to include our metadata elements.

ATM we support additional keyword args which are then stored within
metadata:
- doc for documentation to describe the attribute (e.g. in –help)

Also, when the default argument of attr.ib is unspecified, set it to
None.

	
reproman.utils.auto_repr(cls)[source]

	Decorator for a class to assign it an automagic quick and dirty __repr__

It uses public class attributes to prepare repr of a class

Original idea: http://stackoverflow.com/a/27799004/1265472

	
reproman.utils.cached_property(prop)[source]

	Cache a property’s return value.

This avoids using lru_cache, which is more complicated than needed for
simple properties and isn’t available in Python 2’s stdlib.

Use this only if the property’s return value is constant over the life of
the object. This isn’t appropriate for a property with a setter or a
property whose getter value may change based some outside state.

This should be positioned below the @property declaration.

	
class reproman.utils.chpwd(path, mkdir=False, logsuffix='')[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrapper around os.chdir which also adjusts environ[‘PWD’]

The reason is that otherwise PWD is simply inherited from the shell
and we have no ability to assess directory path without dereferencing
symlinks.

If used as a context manager it allows to temporarily change directory
to the given path

	
reproman.utils.cmd_err_filter(err_string)[source]

	Creates a filter for CommandErrors that match a specific error string

	Parameters

	err_string (basestring) – The error string we want to match

	Returns

	

	Return type

	func object -> boolean

	
reproman.utils.command_as_string(command)[source]

	Convert command to the string representation.

	Parameters

	command (list [https://docs.python.org/3/library/stdtypes.html#list] or str [https://docs.python.org/3/library/stdtypes.html#str]) – If it is a list, convert it to a string, quoting each element as
needed. If it is a string, it is returned as is.

	
reproman.utils.encode_filename(filename)[source]

	Encode unicode filename

	
reproman.utils.escape_filename(filename)[source]

	Surround filename in “” and escape ” in the filename

	
reproman.utils.execute_command_batch(session, command, args, exception_filter=None)[source]

	Generator that executes session.execute_command, with batches of args

We want to call commands like “apt-cache policy” on a large number of
packages, but risk creating command-lines that are too long. This
function is a generator that will call execute_command but with batches
of arguments (to stay within the command-line length limit) and yield the
results.

	Parameters

	
	session – Session object that implements the execute_command() member

	command (sequence) – The command that we wish to execute

	args (sequence) – The long list of additional arguments we wish to pass to the command

	exception_filter (func x -> bool) – A filter of exception types that the calling code will gracefully handle

	Returns

	stdout of the command, stderr of the command, and an exception
that is in the list of expected exceptions

	Return type

	(out, err, exception)

	
reproman.utils.expandpath(path, force_absolute=True)[source]

	Expand all variables and user handles in a path.

By default return an absolute path

	
reproman.utils.file_basename(name, return_ext=False)[source]

	Strips up to 2 extensions of length up to 4 characters and starting with alpha
not a digit, so we could get rid of .tar.gz etc

	
reproman.utils.find_files(regex, topdir='.', exclude=None, exclude_vcs=True, exclude_reproman=False, dirs=False)[source]

	Generator to find files matching regex

	Parameters

	
	regex (basestring) –

	exclude (basestring, optional) – Matches to exclude

	exclude_vcs – If True, excludes commonly known VCS subdirectories. If string, used
as regex to exclude those files (regex: ‘/.(?:git|gitattributes|svn|bzr|hg)(?:/|$)’)

	exclude_reproman – If True, excludes files known to be reproman meta-data files (e.g. under
.reproman/ subdirectory) (regex: ‘/.(?:reproman)(?:/|$)’)

	topdir (basestring, optional) – Directory where to search

	dirs (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Either to match directories as well as files

	
reproman.utils.generate_unique_name(pattern, nameset)[source]

	Create a unique numbered name from a pattern and a set

	Parameters

	
	pattern (basestring) – The pattern for the name (to be used with %) that includes one %d
location

	nameset (collection) – Collection (set or list) of existing names. If the generated name is
used, then add the name to the nameset.

	Returns

	The generated unique name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
reproman.utils.get_cmd_batch_len(arg_list, cmd_len)[source]

	Estimate the maximum batch length for a given argument list

To make sure we don’t call shell commands with too many arguments
this function looks at an argument list and the command length without
any arguments, and estimates the number of arguments we want to batch
together at one time.

	Parameters

	
	arg_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list to process in the command

	cmd_len (number) – The length of the command without arguments

	Returns

	The maximum number in a single batch

	Return type

	number

	
reproman.utils.get_func_kwargs_doc(func)[source]

	Provides args for a function

	Parameters

	func (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the function from which args are being requested

	Returns

	of the args that a function takes in

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
reproman.utils.get_tempfile_kwargs(tkwargs={}, prefix='', wrapped=None)[source]

	Updates kwargs to be passed to tempfile. calls depending on env vars

	
reproman.utils.getargspec(func)[source]

	Backward-compatibility wrapper for inspect.getargspec.

	
reproman.utils.getpwd()[source]

	Try to return a CWD without dereferencing possible symlinks

If no PWD found in the env, output of getcwd() is returned

	
reproman.utils.instantiate_attr_object(item_type, items)[source]

	Instantiate item_type given items (for a list or dict)

Provides a more informative exception message in case if some arguments
are incorrect

	
reproman.utils.is_binarystring(s)[source]

	Return true if an object is a binary string (not unicode)

	
reproman.utils.is_explicit_path(path)[source]

	Return whether a path explicitly points to a location

Any absolute path, or relative path starting with either ‘../’ or
‘./’ is assumed to indicate a location on the filesystem. Any other
path format is not considered explicit.

	
reproman.utils.is_interactive()[source]

	Return True if all in/outs are tty

	
reproman.utils.is_subpath(path, directory)[source]

	Test whether path is below (or is itself) directory.

Symbolic links are not resolved before the check.

	
reproman.utils.is_unicode(s)[source]

	Return true if an object is unicode

	
reproman.utils.items_to_dict(l, attrs='name', ordered=False)[source]

	Given a list of attr instances, return a dict using specified attrs as keys

	Parameters

	
	attrs (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str) – Which attributes of the items to use to group

	ordered (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Either to return an ordered dictionary following the original order of items in the list

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If there is a conflict - multiple items with the same attrs used for key

	Returns

	

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict] or collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
reproman.utils.join_sequence_of_dicts(seq)[source]

	Joins a sequence of dicts into a single dict

	Parameters

	seq (sequence) – Sequence of dicts to join

	Returns

	

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	RuntimeError if a duplicate key is encountered.

	
reproman.utils.knows_annex(path)[source]

	Returns whether at a given path there is information about an annex

It is just a thin wrapper around GitRepo.is_with_annex() classmethod
which also checks for path to exist first.

This includes actually present annexes, but also uninitialized ones, or
even the presence of a remote annex branch.

	
reproman.utils.line_profile(func)[source]

	Q&D helper to line profile the function and spit out stats

	
reproman.utils.lmtime(filepath, mtime)[source]

	Set mtime for files, while not de-referencing symlinks.

To overcome absence of os.lutime

Works only on linux and OSX ATM

	
reproman.utils.make_tempfile(content=None, wrapped=None, **tkwargs)[source]

	Helper class to provide a temporary file name and remove it at the end (context manager)

	Parameters

	
	mkdir (bool [https://docs.python.org/3/library/functions.html#bool], optional (default: False)) – If True, temporary directory created using tempfile.mkdtemp()

	content (str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – Content to be stored in the file created

	wrapped (function, optional) – If set, function name used to prefix temporary file name

	**tkwargs – All other arguments are passed into the call to tempfile.mk{,d}temp(),
and resultant temporary filename is passed as the first argument into
the function t. If no ‘prefix’ argument is provided, it will be
constructed using module and function names (‘.’ replaced with
‘_’).

	change the used directory without providing keyword argument 'dir' set (To) –

	REPROMAN_TESTS_TEMPDIR. –

Examples

>>> from os.path import exists
>>> from reproman.utils import make_tempfile
>>> with make_tempfile() as fname:
... k = open(fname, 'w').write('silly test')
>>> assert not exists(fname) # was removed

>>> with make_tempfile(content="blah") as fname:
... assert open(fname).read() == "blah"

	
reproman.utils.md5sum(filename)[source]

	

	
reproman.utils.merge_dicts(ds)[source]

	Convert an iterable of dictionaries.

In the case of key collisions, the last value wins.

	Parameters

	ds (iterable of dicts) –

	Returns

	

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
reproman.utils.not_supported_on_windows(msg=None)[source]

	A little helper to be invoked to consistently fail whenever functionality is
not supported (yet) on Windows

	
reproman.utils.only_with_values(d)[source]

	Given a dictionary, return the one only with entries which had non-null values

	
reproman.utils.optional_args(decorator)[source]

	allows a decorator to take optional positional and keyword arguments.
Assumes that taking a single, callable, positional argument means that
it is decorating a function, i.e. something like this:

@my_decorator
def function(): pass

Calls decorator with decorator(f, *args, **kwargs)

	
reproman.utils.parse_kv_list(params)[source]

	Create a dict from a “key=value” list.

	Parameters

	params (sequence of str or mapping) – For a sequence, each item should have the form “<key>=<value”. If
params is a mapping, it will be returned as is.

	Returns

	

	Return type

	A mapping from backend key to value.

	Raises

	ValueError if item in params does not match expected “key=value” format.

	
reproman.utils.parse_semantic_version(version)[source]

	Split version into major, minor, patch, and tag components.

	Parameters

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – A version string X.Y.Z. X, Y, and Z must be digits. Any remaining
text is treated as a tag (e.g., “-rc1”).

	Returns

	

	Return type

	A namedtuple with the form (major, minor, patch, tag)

	
reproman.utils.partition(items, predicate=<class 'bool'>)[source]

	Partition items by predicate.

	Parameters

	
	items (iterable) –

	predicate (callable) – A function that will be mapped over each element in items. The
elements will partitioned based on whether the return value is false or
true.

	Returns

	
	A tuple with two generators, the first for ‘false’ items and the second for

	’true’ ones.

Notes

Taken from Peter Otten’s snippet posted at
https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html

	
reproman.utils.pycache_source(path)[source]

	Map a pycache path to the original path.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Python cache file.

	Returns

	
	Path of cached Python file (str) or None if path doesn’t look like a

	cache file.

	
reproman.utils.rmtemp(f, *args, **kwargs)[source]

	Wrapper to centralize removing of temp files so we could keep them around

It will not remove the temporary file/directory if REPROMAN_TESTS_KEEPTEMP
environment variable is defined

	
reproman.utils.rmtree(path, chmod_files='auto', *args, **kwargs)[source]

	To remove git-annex .git it is needed to make all files and directories writable again first

	Parameters

	
	chmod_files (string or bool [https://docs.python.org/3/library/functions.html#bool], optional) – Either to make files writable also before removal. Usually it is just
a matter of directories to have write permissions.
If ‘auto’ it would chmod files on windows by default

	*args –

	**kwargs – Passed into shutil.rmtree call

	
reproman.utils.rotree(path, ro=True, chmod_files=True)[source]

	To make tree read-only or writable

	Parameters

	
	path (string) – Path to the tree/directory to chmod

	ro (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Either to make it R/O (default) or RW

	chmod_files (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Either to operate also on files (not just directories)

	
reproman.utils.safe_write(ostream, s, encoding='utf-8')[source]

	Safely write different string types to an output stream

	
reproman.utils.setup_exceptionhook(ipython=False)[source]

	Overloads default sys.excepthook with our exceptionhook handler.

If interactive, our exceptionhook handler will invoke
pdb.post_mortem; if not interactive, then invokes default handler.

	
reproman.utils.shortened_repr(value, l=30)[source]

	

	
reproman.utils.sorted_files(dout)[source]

	Return a (sorted) list of files under dout

	
reproman.utils.swallow_logs(new_level=None)[source]

	Context manager to consume all logs.

	
reproman.utils.swallow_outputs()[source]

	Context manager to help consuming both stdout and stderr, and print()

stdout is available as cm.out and stderr as cm.err whenever cm is the
yielded context manager.
Internally uses temporary files to guarantee absent side-effects of swallowing
into StringIO which lacks .fileno.

print mocking is necessary for some uses where sys.stdout was already bound
to original sys.stdout, thus mocking it later had no effect. Overriding
print function had desired effect

	
reproman.utils.to_binarystring(s, encoding='utf-8')[source]

	Converts any type string to binarystring

	
reproman.utils.to_unicode(s, encoding='utf-8')[source]

	Converts any type string to unicode

	
reproman.utils.unique(seq, key=None)[source]

	Given a sequence return a list only with unique elements while maintaining order

This is the fastest solution. See
https://www.peterbe.com/plog/uniqifiers-benchmark
and
http://stackoverflow.com/a/480227/1265472
for more information.
Enhancement – added ability to compare for uniqueness using a key function

	Parameters

	
	seq – Sequence to analyze

	key (callable, optional) – Function to call on each element so we could decide not on a full
element, but on its member etc

	
reproman.utils.updated(d, update)[source]

	Return a copy of the input with the ‘update’

Primarily for updating dictionaries

	
reproman.utils.write_update(fname, content, encoding=None)[source]

	Write content to fname unless it already has matching content.

This is the same as simply writing the content, except no writing occurs if
the content of the existing file matches, the write or update is logged,
and the leading directories of fname are created if needed.

	Parameters

	
	fname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to update.

	content (str [https://docs.python.org/3/library/stdtypes.html#str]) – Content to dump to path.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None], optional) – Passed to open.

reproman.version

Defines version to be imported in the module and obtained from setup.py

reproman.support.configparserinc

	
class reproman.support.configparserinc.SafeConfigParserWithIncludes(*args, **kwargs)[source]

	Bases: configparser.ConfigParser [https://docs.python.org/3/library/configparser.html#configparser.ConfigParser]

Class adds functionality to SafeConfigParser to handle included
other configuration files (or may be urls, whatever in the future)

File should have section [includes] and only 2 options implemented
are ‘files_before’ and ‘files_after’ where files are listed 1 per
line.

Example:

[INCLUDES]
before = 1.conf
 3.conf

after = 1.conf

It is a simple implementation, so just basic care is taken about
recursion. Includes preserve right order, ie new files are
inserted to the list of read configs before original, and their
includes correspondingly so the list should follow the leaves of
the tree.

I wasn’t sure what would be the right way to implement generic (aka c++
template) so we could base at any *configparser class… so I will
leave it for the future

	
SECTION_NAME = 'INCLUDES'

	

	
static getIncludes(resource, seen=[])[source]

	Given 1 config resource returns list of included files
(recursively) with the original one as well
Simple loops are taken care about

	
read(filenames)[source]

	Read and parse a filename or an iterable of filenames.

Files that cannot be opened are silently ignored; this is
designed so that you can specify an iterable of potential
configuration file locations (e.g. current directory, user’s
home directory, systemwide directory), and all existing
configuration files in the iterable will be read. A single
filename may also be given.

Return list of successfully read files.

reproman.config

Registry-like monster for now simply borrowed from bigmess/pymvpa

TODO: integration with cmdline etc

	
class reproman.config.ConfigManager(filenames=None, load_default=True)[source]

	Bases: reproman.support.configparserinc.SafeConfigParserWithIncludes, object [https://docs.python.org/3/library/functions.html#object]

Central configuration registry for reproman.

The purpose of this class is to collect all configurable settings
used by various parts of reproman. It is fairly simple and does
only little more than the standard Python ConfigParser. Like
ConfigParser it is blind to the data that it stores, i.e. no type
checking is performed.

Configuration files (INI syntax) in multiple location are parsed
when a class instance is created or whenever Config.reload() is
called later on. Files are read and parsed in the order described by
LOCATIONS_DOC.

Moreover, the constructor takes an optional argument with a list
of additional file names to parse afterwards.

In addition to configuration files, this class also looks for
special environment variables to read settings from. Names of such
variables have to start with REPROMAN_ following by the an
optional section name and the variable name itself (‘_’ as
delimiter). If no section name is provided, the variables will be
associated with section general. Some examples:

REPROMAN_VERBOSE=1

will become:

[general]
verbose = 1

However, REPROMAN_VERBOSE_OUTPUT=stdout becomes:

[verbose]
output = stdout

Any length of variable name as allowed, e.g. REPROMAN_SEC1_LONG_NAME=1
becomes:

[sec1]
long name = 1

Settings from custom configuration files (specified by the constructor
argument) have the highest priority and override settings found in any of
the config files read from default locations (which are themselves read in
the order stated above – overwriting earlier configuration settings
accordingly). Finally, the content of any REPROMAN_* environment variables
overrides any settings read from any file.

	
dirs = <appdirs.AppDirs object>

	

	
get(section, option, default=None, **kwargs)[source]

	Wrapper around SafeConfigParser.get() with a custom default value.

This method simply wraps the base class method, but adds a default
keyword argument. The value of default is returned whenever the
config parser does not have the requested option and/or section.

	
get_as_dtype(section, option, dtype, default=None)[source]

	Convenience method to query options with a custom default and type

This method simply wraps the base class method, but adds a
default keyword argument. The value of default is returned
whenever the config parser does not have the requested option
and/or section.

In addition, the returned value is converted into the
specified dtype.

	
getboolean(section, option, default=None)[source]

	Wrapper around SafeConfigParser.getboolean() with a custom default.

This method simply wraps the base class method, but adds a default
keyword argument. The value of default is returned whenever the
config parser does not have the requested option and/or section.

	
getpath(*args, **kwargs)[source]

	Wrapper around get to do additional path treatments such as expanduser

See documentation for get

	
reload(filenames=None)[source]

	Re-read settings from all configured locations.

reproman.tests.utils

Miscellaneous utilities to assist with testing

	
class reproman.tests.utils.SilentHTTPHandler(*args, **kwargs)[source]

	Bases: http.server.SimpleHTTPRequestHandler [https://docs.python.org/3/library/http.server.html#http.server.SimpleHTTPRequestHandler]

A little adapter to silence the handler

	
log_message(format, *args)[source]

	Log an arbitrary message.

This is used by all other logging functions. Override
it if you have specific logging wishes.

The first argument, FORMAT, is a format string for the
message to be logged. If the format string contains
any % escapes requiring parameters, they should be
specified as subsequent arguments (it’s just like
printf!).

The client ip and current date/time are prefixed to
every message.

	
reproman.tests.utils.assert_cwd_unchanged(func, ok_to_chdir=False)[source]

	Decorator to test whether the current working directory remains unchanged

	Parameters

	ok_to_chdir (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, allow to chdir, so this decorator would not then raise exception
if chdir’ed but only return to original directory

	
reproman.tests.utils.assert_equal(a, b, msg=None)[source]

	

	
reproman.tests.utils.assert_false(x, msg=None)[source]

	

	
reproman.tests.utils.assert_greater(a, b, msg=None)[source]

	

	
reproman.tests.utils.assert_greater_equal(a, b, msg=None)[source]

	

	
reproman.tests.utils.assert_in(x, collection, msg=None)[source]

	

	
reproman.tests.utils.assert_in_in(substr, lst)[source]

	Verify that a substring is in an element of a list

	
reproman.tests.utils.assert_is(a, b, msg=None)[source]

	

	
reproman.tests.utils.assert_is_instance(a, b, msg=None)[source]

	

	
reproman.tests.utils.assert_is_subset_recur(a, b, subset_types=[])[source]

	Asserts that ‘a’ is a subset of ‘b’ (recursive on dicts and lists)

	Parameters

	
	a (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The desired subset collection (items that must be in b)

	b (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The superset collection

	subset_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of classes (from list, dict) that allow subsets. Otherwise
we use strict matching.

	
reproman.tests.utils.assert_not_equal(a, b, msg=None)[source]

	

	
reproman.tests.utils.assert_not_in(x, collection, msg=None)[source]

	

	
reproman.tests.utils.assert_re_in(regex, c, flags=0)[source]

	Assert that container (list, str, etc) contains entry matching the regex

	
reproman.tests.utils.assert_true(x, msg=None)[source]

	

	
reproman.tests.utils.create_pymodule(directory)[source]

	Create a skeleton Python module in directory.

	Parameters

	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a non-existing directory.

	
reproman.tests.utils.create_tree(path, tree, archives_leading_dir=True)[source]

	Given a list of tuples (name, load) create such a tree

if load is a tuple itself – that would create either a subtree or an archive
with that content and place it into the tree if name ends with .tar.gz

	
reproman.tests.utils.eq_(a, b, msg=None)

	

	
reproman.tests.utils.get_most_obscure_supported_name(tdir)[source]

	Return the most obscure filename that the filesystem would support under TEMPDIR

TODO: we might want to use it as a function where we would provide tdir

	
reproman.tests.utils.in_(x, collection, msg=None)

	

	
reproman.tests.utils.neq_(a, b, msg=None)

	

	
reproman.tests.utils.nok_(x, msg=None)

	

	
reproman.tests.utils.nok_startswith(s, prefix)[source]

	

	
reproman.tests.utils.ok_(x, msg=None)

	

	
reproman.tests.utils.ok_broken_symlink(path)[source]

	

	
reproman.tests.utils.ok_endswith(s, suffix)[source]

	

	
reproman.tests.utils.ok_file_has_content(path, content)[source]

	Verify that file exists and has expected content

	
reproman.tests.utils.ok_generator(gen)[source]

	

	
reproman.tests.utils.ok_good_symlink(path)[source]

	

	
reproman.tests.utils.ok_startswith(s, prefix)[source]

	

	
reproman.tests.utils.ok_symlink(path)[source]

	Checks whether path is either a working or broken symlink

	
reproman.tests.utils.run_under_dir(func, newdir='.')[source]

	Decorator to run tests under another directory

It is somewhat ugly since we can’t really chdir
back to a directory which had a symlink in its path.
So using this decorator has potential to move entire
testing run under the dereferenced directory name – sideeffect.

The only way would be to instruct testing framework (i.e. nose
in our case ATM) to run a test by creating a new process with
a new cwd

	
reproman.tests.utils.serve_path_via_http(tfunc, *targs)[source]

	Decorator which serves content of a directory via http url

	
reproman.tests.utils.with_tempfile(t, **tkwargs)[source]

	Decorator function to provide a temporary file name and remove it at the end

	Parameters

	
	change the used directory without providing keyword argument 'dir' set (To) –

	REPROMAN_TESTS_TEMPDIR. –

	mkdir (bool [https://docs.python.org/3/library/functions.html#bool], optional (default: False)) – If True, temporary directory created using tempfile.mkdtemp()

	content (str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – Content to be stored in the file created

	wrapped (function, optional) – If set, function name used to prefix temporary file name

	**tkwargs – All other arguments are passed into the call to tempfile.mk{,d}temp(),
and resultant temporary filename is passed as the first argument into
the function t. If no ‘prefix’ argument is provided, it will be
constructed using module and function names (‘.’ replaced with
‘_’).

Examples

@with_tempfile
def test_write(tfile):
 open(tfile, 'w').write('silly test')

	
reproman.tests.utils.with_testsui(t, responses=None)[source]

	Switch main UI to be ‘tests’ UI and possibly provide answers to be used

	
reproman.tests.utils.with_tree(t, tree=None, archives_leading_dir=True, delete=True, **tkwargs)[source]

	

	
reproman.tests.utils.without_http_proxy(tfunc)[source]

	Decorator to remove http*_proxy env variables for the duration of the test

reproman.cmdline.main

	
reproman.cmdline.main.main(args=None)[source]

	

	
reproman.cmdline.main.setup_parser(formatter_class=<class 'argparse.RawDescriptionHelpFormatter'>, return_subparsers=False)[source]

	

reproman.cmdline.helpers

	
class reproman.cmdline.helpers.HelpAction(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)[source]

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

	
class reproman.cmdline.helpers.LogLevelAction(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)[source]

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

	
class reproman.cmdline.helpers.PBSAction(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)[source]

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Action to schedule actual command execution via PBS (e.g. Condor)

	
class reproman.cmdline.helpers.RegexpType[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Factory for creating regular expression types for argparse

DEPRECATED AFAIK – now things are in the config file,
but we might provide a mode where we operate solely from cmdline

	
reproman.cmdline.helpers.get_repo_instance(path='.', class_=None)[source]

	Returns an instance of appropriate reproman repository for path.
Check whether a certain path is inside a known type of repository and
returns an instance representing it. May also check for a certain type
instead of detecting the type of repository.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to check; default: current working directory

	class (class) – if given, check whether path is inside a repository, that can be
represented as an instance of the passed class.

	Raises

	RuntimeError, in case cwd is not inside a known repository.

	
reproman.cmdline.helpers.parser_add_common_args(parser, pos=None, opt=None, **kwargs)[source]

	

	
reproman.cmdline.helpers.parser_add_common_opt(parser, opt, names=None, **kwargs)[source]

	

	
reproman.cmdline.helpers.run_via_pbs(args, pbs)[source]

	

	
reproman.cmdline.helpers.strip_arg_from_argv(args, value, opt_names)[source]

	Strip an originally listed option (with its value) from the list cmdline args

reproman.cmdline.common_args

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 reproman	

 	
 	
 reproman.api	

 	
 	
 reproman.cmd	

 	
 	
 reproman.cmdline.common_args	

 	
 	
 reproman.cmdline.helpers	

 	
 	
 reproman.cmdline.main	

 	
 	
 reproman.config	

 	
 	
 reproman.consts	

 	
 	
 reproman.log	

 	
 	
 reproman.support.configparserinc	

 	
 	
 reproman.tests.utils	

 	
 	
 reproman.utils	

 	
 	
 reproman.version	

 Index

 Index pages by letter:

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

 Full index on one page
 (can be huge)

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index
